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 ABSTRACT 

 The paper focuses on the invention and examination of three lossless data compression techniques: Shannon-

Fano, Huffman, and the Burrows-Wheeler Transform (BWT). The results of each approach applied to a group 

of files are compared and evaluated. The Shannon-Fano approach has varied compression and decompression 

timings across files, with compression timings ranging from 30 to 260 milliseconds and decompression 

timings ranging from 120 to 2000 milliseconds. The approach achieves varying levels of compression, 

resulting in less storage space and computing time among datasets. The Huffman technique, on the other 

hand, yields compression ratios that vary between 0.19 to 0.9, with associated saving percentages ranging 

from 20.0% to 72.5%. The BWT algorithm showcases compression ratios ranging from 0.2 to 0.7 and saving 

percentages from 25.0% to 90.0%. By analyzing the results, the study provides valuable insights into the 

performance of these compression techniques and their effectiveness in handling diverse datasets. 

Keywords: Compression Techniques, Huffman Coding, Shannon-Fano Algorithm, Burrows-Wheeler 

Transform (BWT). 
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INTRODUCTION 

The development and generation of digital information have reached unprecedented levels 

in today's data-driven society, embracing multiple fields like communications, storage, and 

applications for multimedia (Fitzgerald, 2020). With the growing development of data, the 

necessity for effective data storage and transfer technologies is becoming increasingly important 

(Ahmad et al.,2022). Data compression, an important method in computer science and signal 

processing (Russell & Wang, 2022), tackles this difficulty by shrinking data without surrendering 

any information, allowing for more efficient and possible resource utilization and improving 

overall system’s efficiency (Wright & Ma, 2022). A compressed photo requires fewer bits than its 

uncompressed counterpart, so it is transmitted faster, and your hardware can process it more 
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quickly; ultimately, the photo loads faster in your browser (Umbaugh, 2022). An audio and video 

file can be compressed by up to 90%, so you can stream it all over the world within seconds 

(Seeliger et al., 2022). Compressed images, videos, and audio files on mobile devices are 

transferred to cloud servers faster, which saves you time when you back up your devices 

(Anaspure, 2022). Lossless data compression algorithms have emerged as a viable solution, with 

the ability to properly rebuild the original data without information loss (Nassra & Capella, 2023). 

Lossless compression methods, as opposed to their lossy equivalents, are especially important in 

situations when data accuracy is critical, including scientific data, healthcare records, monetary 

transactions, and preservation purposes (Gudodagi et al.,2023). 

Fig 1.1: Data compression 

This research article focuses on the implementation and study of lossless compression of 

data techniques. As the demand for fast data handling grows, it is critical to investigate and assess 

the performance of different compression algorithms in order to determine their usefulness across 

diverse types of applications and data. This paper intends to contribute to a better knowledge of 

lossless compression of data by shining light on its advantages, limitations, and optimisation 

possibilities. The results of this research paper are mainly intended to make a substantial 

contribution to the study of lossless compression of data by directing the selection and execution 

of appropriate compression techniques for a variety of real-world applications. We hope to enable 

technologies and industries that depend on massive amounts of data by improving compression 

performance and reducing data redundancy, bringing us closer to a more interconnected and 

efficient digital society. In our paper, we study different methods of lossless text data compression 

algorithms and calculating the compression size, compression ratio, processing time or speed using 

Shannon- Fano, Huffman and Burrows Wheeler Transform Coding.  

Finally, the outcomes of this paper will help to provide a complete and specific 

comprehension in lossless data compression techniques, their practical practicality, and their 

possible uses for optimizing the transmission and storage of data in a variety of real-world 

circumstances. The findings of this research will also help data practitioners, programmers, and 

academics choose the best compression algorithms based on the type of their data as well as the 

performance needs of their systems. 
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LITERATURE REVIEW 
 

The following review of the literature provides a review of the major research papers and 

advances in the execution and evaluation of lossless compression of data techniques. 

Several studies (Biagetti et al.,2021) (Otair et al.,2022) (Hidayat et al.,2020) have been 

conducted to compare the performance of various lossless compression techniques. Mohammadi 

et al. (2022) compared Huffman coding, LZW, or the BWT algorithms on diverse data formats, 

highlighting their advantages and disadvantages. Al-Qurabat and Kadhum (2021) compared 

lossless compression algorithms and analysed their usefulness for various application scenarios. 

Researchers also investigated the adaptation of lossless compression techniques to various data 

formats (Zhang et al.,2023). Long et al. (2021), for example, studied the performance of several 

important methods on genomic data, whereas Mallik and Zhao (2020) investigated their usefulness 

in compressing images from medical imaging. Arithmetic coding is a statistical encoding 

technique proposed in 1987 by researchers Ian H. Witten & Radford M. Neal that specifically 

provides fractional bit illustrations for symbols. (Mentzer et al.,2020) It allocates each symbol a 

unique interval based on its likelihood of occurrence, leading to concise representation for 

commonly seen symbols. Townsend (2021) investigated theoretical elements of arithmetic coding, 

whereas later research concentrated on hardware solutions for quicker decoding and encoding 

applications. (Ma et al., 2019). The Burrows-Wheeler Transform, invented by Michael Burrows 

& David J. Wheeler in 1994, is a data transformation tool (Bello, 2020). When paired with a move-

to-front and run-length encoding, it organizes the input data to produce runs of identical characters, 

resulting in greater compression ratios (Kumar et al., 2019). Rahman & Hamada (2020) recently 

investigated the application of simultaneous processing and acceleration in hardware to optimise 

the BWT compression technique. The LZW algorithm, developed by Abraham Lempel, Jacob Ziv, 

and Terry Welch in 1984, is a dictionary-based compression method. It builds a dictionary of 

variable-length codes from the input data and effectively represents repetitive patterns with shorter 

codes. The LZW algorithm has been extensively studied and widely implemented in various 

compression utilities, with research focusing on adaptive variations and dictionary management 

techniques (Rahman & Hamada, 2019; Shah & Banday, 2020). David A. Huffman created 

Huffman coding in 1952, and it is one of the first and most extensively used lossless compression 

algorithms (Karim et al., 2021) (Erdal & Ergüzen,2019). By considering the frequency of the 

presence of symbols within the input data, the algorithm generates a variable-length prefix code. 

Sarangi (2022), for example, investigated several tweaks and optimizations to increase the 

compression effectiveness of Huffman coding. SANDHU (2021) also presented a distributed 

implementation of the Huffman method that takes advantage of multi-core CPUs to achieve higher 

compression speeds. 

RESEARCH METHODOLOGY 

Algorithms Applied 

Shannon-Fano: Around 1960, Claude E. Shannon from MIT and Robert M. Fano from Bell 

Laboratories jointly developed a coding procedure that led to the creation of a binary code tree 
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(Williams, 2022). This innovative procedure involved evaluating the probabilities of symbols and 

assigning code words based on their respective code lengths. Although the Shannon-Fano coding 

technique is very simple and easy to develop in comparison to other ways, but it also lacks practical 

significance due to lesser code effectiveness when compared with Huffman coding, as 

demonstrated in future demonstrations. (Lawal et al., 2021). The procedure of building a Shannon-

Fano tree adheres to a certain specification to establish a successful code table, and the technique 

itself is straightforward. To build the code table, a listing of symbols and their accompanying 

percentages or frequency counts are created and implemented, allowing the relative frequency of 

occurrence of each symbol to be determined accurately. Despite its historical relevance, the 

Shannon-Fano coding methodology has seen limited implementation in practise, with more 

effective approaches such as Huffman coding dominating in a variety of data compression 

applications. (Oswald & Sivaselvan, 2023; Grewal, 2021). 

Shannon-Fano Algorithm: 

1. Sort the symbol lists by the level of frequency, with the ones that appear most frequently 

appearing symbols on the left side and the least frequently occurring symbols on the right 

side. 

2. Split the list into two main sections, with the overall frequency numbers for the left part or 

side closest to the overall frequency values for the right side as appropriate. 

3. The binary digit 0 is then assigned to the left portion of the list, and the binary digit 1 is 

assigned to the right part of the list. 

4. Apply and repeat steps 3 and 4 recursively to each of the two portions, subdividing groups 

and inserting bits to the code until and unless every character has become a code leaf on 

the tree. 

 

 

 

 

Step 1 

   Inputs are sorted according to their Frequency.  

 



Traditional Journal of Multidisciplinary Sciences (TJMS)                                January-June 2023, Vol. 1, No. 2 

 

17 
 
 

 

 

Step 2: Symbols are divided into two such that sum of the probability on the left side is almost 

equal to the probability on the right side (Repeat for all the symbols). 

Step 3 (It will repeat for all symbols)    
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                                                                  Final Step 

Huffman Encoding 

Huffman coding is an entropy encoding algorithm for lossless statistics compression (Liu 

et al.,2022). In this set of rules, many fixed length codes are being replaced with the aid of variable-

length codes. While using variable-length code phrases, it is suited to create an expected prefix 

code, avoiding the need for a separator to determine codeword barriers or chellenges. Huffman 

Coding mostly uses such a prefix code. A specific probability distribution is used to build a code 

tree using Huffman coding. (Nosratian et al.,2021). It varies in three types (Ashila et al., 2019). 

1. Static Probability distribution 

2. Dynamic Probability distribution 

3. Adaptive Probability distribution 

Huffman Algorithm: The input is an array of unique characters accompanied by their 

frequency of occurrences, and the output is a Huffman Tree based on the given input. (Moffat, 

2019) (Kumari & Saini, 2022) 

1. Make a (leaf) node for every particular symbol and generate a min-heap by the leaf nodes 

2. Find nodes which have the nominal rates from the min heap. 

3. Construct a new innermost node with the same number of occurrences as the sum of the 

frequencies of the other two nodes. Create the initial extracted node the left node & the 

second the right node. Add the following node to the bottom of the heap. 

4. Steps 2 and 3 should be repeated until the heap holds only one node. The final node is a 

foundation node, and the structure of the tree is complete. 

Flow of Huffman Coding: 

Fig.2.2 Data compression Flow Graph 
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I. Symbols that appear frequently use lower encoding than symbols that appear less 

frequently. 

II. Both symbols that appear the fewest times will be the same length. The Huffman algorithm 

employs the greedy method, in which the collection of rules selects the most pleasurable 

choice at each step. A binary structure is built from the ground up. Let us look at an example 

of how Huffman Coding works. Expect the following frequencies for each character in a 

compressed report: 

The method of making this tree is: 

1. Create an extensive list of leaf nodes for each image and arrange the nodes according to 

the order of descent. 

 

2. Choose the leaf nodes that have the lowest frequency. Construct a parent node containing 

both of these nodes and apply the same frequency to the total of the two infant node 

frequencies. 

 

 

Fig.2.3 Lowest Parent Node Creation 

 

3. Now, inside the list, add the determined node and remove the two baby nodes. Repeat 

this procedure until you only have one effective node remaining. 

Fig.2.4 Huffman Code Tree 
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4. Now label every aspect. The left child of every parent is categorized with the digit 0 and 

right toddler with 1. The code phrase for each source letter is the order of labels alongside 

the direction from root to the leaf node in place of the letter. 

Huffman Codes are proven beneath within the table: 

 

  

 

 

 

 

 

Burrows Wheel Transform Coding 

In 1994, M. Burrows and D. Wheeler presented a new data compression technique based 

on a pre-processing on the input string. Such a Pre-processing, called after them the Burrows 

Wheeler Transform (BWT), produces a permutation of the letters in the input string such that 

(Giuliani et al.,2021) (Begum et al.,2023) 

a. the transformed string is easier to compress than the original one. 

b. the original string can be recovered. 

It is a lexicographically reversible permutation of a string's characters. It is the first of three steps 

to be taken in order when developing the Burrows-Wheeler Data Compressed algorithm, which is 

the foundation of the Unix compression programme bzip2.The Burrows-Wheeler Transform offers 

two decoding algorithms. 

1. The first relies on adding and sorting the output text to make a number matrix M of N x N 

dimensions in order to revert the coding process. This approach is simple and straightforward, 

but it requires more time for the computer to complete, and the original text S is not recovered 

directly. 

2. The second approach is more complex than the first depending on the permutations, but it 

requires less commuting time as well as storage and will be described. Unlike the first 

technique, the result of this method corresponds to the original string S; at the start, we have 

the converted string L as well as the index I. 

To encode using MTF, a dictionary which is ordered according to the symbols being 

entered must be constructed. This is accomplished by shifting the element in the list of symbols 

that corresponds to the content of the symbol to the top of the dictionary. Although the preceding 

method is used for encoding, it is also used for decoding. 
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Burrows Wheeler Transform Algorithm 

 

Fig.2.5 BWT Coding 

Data Collection 

Text data with the extension txt was utilised as an example in evaluating this compression 

strategy. Three text examples files were used in this investigation. Each algorithm has its own: 

 

NO 

 

Compression Technique 

.txt 

Size in Bytes 

1. Shannon-Fano Algorithm 13500 

2. Huffman Coding 15600 

3. Burrows Wheel Transform 

Coding 

10600 

Table 1 Algorithm’s Data Collection 

Analysis Technique 

In this comparison, several types of analysis were used: (Sharma & Batra, 2020). 

1. The first step is to analyse how it operates in addition to the algorithms. 

2. The first step is to do an analysis of how it's done as well as a study of algorithms.  

3. Compression time = Starting time - Finishing time 

Flow of Data Collection and Analysis 
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Fig 2.6 Data Flow 

RESULTS AND FINDINGS 

Shannon-Fano Algorithm 

The results reveal that compression and decompression durations vary between files, from 

30 to 260 milliseconds for compression and 120 to 2000 milliseconds for decompression. Overall, 

the result shows the Shannon-Fano algorithm's success in achieving various levels of compression, 

reducing storage space, and the related choices with computational time required across various 

datasets. 

S. 

No

  

File Size 

(Bytes) 

Comp 

File 

Size 

(Bytes) 

Compression 

Ratio  

Compression 

Factor  

Saving 

Percentage

  

Comp 

Time 

(mS) 

Decomp 

Time 

(mS) 

1 204800 102400 0.5 2.0 50.0%  120 700 

2 128000

  

45056 0.352 2.84 64.8%  90 450 

3 65536 40960 0.625 1.6 37.5% 50 280 

4 409600 122880 0.3 3.33 70.0%  200 2000 

5 256000 51200 0.2 5.0 80.0%  140 900 

6 10240 7680 0.75 1.33 25.0%  30 120 

7 81920 53248 0.65 1.54 35.0%  180 800 

8 86016 33792 0.39 2.96  61.0%  80 400 

9 163840 94208 0.575  1.74 42.5%  260 1500 

10 28672 15360 0.535 1.87 46.5%  100 550 
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A compression ratio of 1.0 indicates that no compression was performed, but lower 

numbers suggest more efficient compression (Gui et al.,2019) This information is supplemented 

by the "Compression Factor" column, which basically represents the inverse of the compression 

ratio. A compression factor of 2.0, means that the compressed file is double as small as the original, 

but a value of 1.33 means that the compressed file is about 1.33 times smaller. Overall "Saving 

Percentage" column shows the percentage of file size reduction accomplished through 

compression, with values ranging from 25.0% to 80.0%. Higher reduction in space and more 

efficient compression are indicated by higher saving percentages. 

Huffman Algorithm 

S. 

No

  

File Size 

(Bytes) 

Comp 

File 

Size 

(Bytes) 

Compression 

Ratio  

Compression 

Factor  

Saving 

Percentage

  

Comp 

Time 

(mS) 

Decomp 

Time 

(mS) 

1 204800 102400 0.9 2.3 20.0%  80 300 

2 128000

  

45056 0.215 2.14 54.8%  100 250 

3 65536 40960 0.545 1.0 32.5% 210 270 

4 409600 122880 0.2 2.33 60.0%  300 1000 

5 256000 51200 0.3 6.0 38.0%  150 800 

6 10240 7680 0.55 1.23 55.0%  60 110 

7 81920 53248 0.76 1.24 35.0%  130 300 

8 86016 33792 0.19 1.83  41.0%  70 500 

9 163840 94208 0.525  1.72 72.5%  250 1600 

10 28672 15360 0.545 1.97 56.5%  110 150 

 

The table shows the results of applying the Shannon-Fano algorithm to a set of files for 

lossless data compression.  The "Compression Ratio" column displays the original file size to 

compressed file size ratio, which ranges from 0.19 to 0.9. Lower compression ratios indicate that 

compression is more efficient. The "Compression Factor" column displays the reciprocal of the 

compression ratio, with values ranging from 1.0 to 6.0, with larger compression factors indicating 

better compression efficiency. The "Saving Percentage" column displays the proportion of file size 

reduction accomplished using compression, which ranges from 20.0% to 72.5%. Higher saving 

percentages indicate greater space savings.  

Burrows Wheel Transform Algorithm 

S. 

No

  

File Size 

(Bytes) 

Comp 

File 

Size 

Compression 

Ratio  

Compression 

Factor  

Saving 

Percentage

  

Comp 

Time 

(mS) 

Decomp 

Time 

(mS) 
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(Bytes) 

1 204800 102400 0.6 2.0 25.0%  120 400 

2 128000

  

45056 0.3 2.74 50.8%  80 450 

3 65536 40960 0.4 2.6 70.5% 50 180 

4 409600 122880 0.3 2.33 40.0%  100 3000 

5 256000 51200 0.2 4.0 90.0%  140 400 

6 10240 7680 0.5 1.53 50.0%  40 110 

7 81920 53248 0.6 2.14 35.0%  150 600 

8 86016 33792 0.3 2.76  31.0%  40 500 

9 163840 94208 0.7 1.25 52.5%  230 1200 

10 28672 15360 0.5 1.27 66.5%  300 120 

 

The table clearly shows the results of applying the Shannon-Fano algorithm to a set of files 

for lossless data compression. Each row corresponds to a specific file, and the table gives many 

critical metrics to evaluate the compression process's effectiveness. The "Compression Ratio" 

column displays the original file size to compressed file size ratio, which basically ranges from 0.2 

to 0.7. Lower compression ratios indicate that compression is more efficient. The column 

"Compression Factor" reflects the reciprocal of the compression ratio, which ranges from 1.25 to 

4.0. However, higher compression factors indicate improved compression efficiency. The "Saving 

Percentage" column shows the percentage of file size reduction accomplished using compression, 

which ranges from 25.0% to 90.0%. Higher saving percentages indicate greater space savings. 

During our research on text compression algorithms, we conducted implementations of 

various methods and drew important conclusions from our experiments. Specifically, we compared 

the performance of the Shannon-Fano algorithm with the Huffman compression technique. Despite 

both algorithms employing similar compression processes, we found that the Shannon-Fano 

compression exhibited less efficiency when compressing text files compared to Huffman 

compression. This was evident from the compressed file size, where Shannon-Fano yielded larger 

files than Huffman, consequently resulting in a lower compression ratio for Shannon-Fano. 

Moreover, the compression time for Shannon-Fano was significantly higher, taking approximately 

67.077 seconds, while Huffman only took 1.313 seconds. Comparatively, the BWT (Burrows-

Wheeler Transform) algorithm proved to be the fastest, completing compression in 0.1522 

seconds. These findings highlight the trade-offs between the different compression algorithms, 

with Huffman emerging as the more effective and efficient option for text compression in our 

experiments. Furthermore, the computational challenge of Huffman coding remained low, 

allowing for fast encoding and decoding procedures. This efficiency is especially beneficial in 

circumstances requiring real-time or quick data compression and decompression, such as 

communication networks or high-throughput data transmission systems. It should be emphasized, 

however, that Huffman coding could not always be the best option for all sorts of data. When 

working with data that lacks clear patterns or when confronted with datasets that consist of 
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uniformly dispersed symbols, like random noise or some types of multimedia files, its performance 

may suffer. 

CONCLUSION 

These findings illustrate the limitations and benefits of the various compression methods, 

with Huffman appearing as the more efficient and effective text compression option in our studies. 

Huffman coding outperformed previous approaches by obtaining greater compression ratios, 

especially for datasets containing largely text-based content. Because of the algorithm's capacity 

to apply shorter codes to commonly appearing symbols in the data, file sizes were significantly 

reduced, which makes it appropriate for textual material such as texts, documents, and source code. 

Finally, the Burrows-Wheeler Transform (BWT) shown distinct advantages in certain cases, 

particularly when combined with other compression algorithms. BWT successfully reorganized 

the data to allow for higher compression ratios for a variety of data types, including DNA 

sequences or textual material with repeating structures. However, its processing overhead and the 

need for additional techniques, such as Move-to-Front (MTF) or Run-Length Encoding, can result 

in complexity that, in some situations, outweighs its benefits. Moving from one-bit-at-a-time 

renormalizations to those which group bits together into bite-sized organisations or larger provides 

an important speed boost. To accommodate a larger variety of period durations, byte-based 

renormalizations need arithmetic operations with adequate accuracy (e.g., a minimum of 16 or 32 

bits). Instead of approximations, such accuracy can be handled efficiently by native CPU 

processes. Multiplications have gotten significantly faster, with little influence on coding speed, 

even for stationary binary coders. Although binary coders perform coding operations quickly, their 

data capacity is usually restricted to one bit per cycle at most. It is best to use algorithms that code 

symbols using larger letters to attain the fastest coding speeds, since they can give much higher 

throughputs and expected outcomes. 

Future Scope 

The study areas listed below offer intriguing prospects for additional investigation in the 

realm of compression algorithms. In addition to the present Shannon-Fano, Huffman, & Burrows-

Wheeler Transform (BWT) approaches, future research could examine adding new compression 

algorithms including Run-Length Encoding (RLE), Move-to-Front (MTF), or LZ77. Furthermore, 

examining the execution of a mixture of BWT, Huffman, & Shannon-Fano algorithms on various 

file types such as photos, audio, and video can broaden the field of compression techniques beyond 

text data. In the years to come, a system based on sensors could be potentially created to 

automatically recognize the file type and then select the best possible compression technique for 

that specific file. With the growing volume of data that is transmitted and stored on a daily basis, 

the necessity for more effective compression methods becomes critical. Efforts can be put towards 

improving compression ratios in current systems, especially when source entropy is low (e.g., less 

than 3 bits/symbol). Exploring search algorithms that rely exclusively on multiplications and 

optimizing the search sequence can result in improved compression efficiency in such 

circumstances. Emphasizing these research areas will help to develop compression technologies 

and allow for more efficient processing of massive datasets in a variety of application fields. 
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