
13

RESEARCH PAPER

Implementation and Analysis of Lossless Data Compression

Khaqan Arif1 Syed Abdur Raheem Ali shah2 Amad Ur Rehman3 Alamzeb4

1-2 Department of Electrical Engineering Hamdard University Islamabad, Pakistan.
3 Department of information and network security, Beihang University of Aeronautics and Astronautics, China.
4 Faculty of Engineering Science and Technology, Hamdard University, Islamabad, Pakistan.

*Corresponding Author khaqanarif0@gmail.com

 ABSTRACT

 The paper focuses on the invention and examination of three lossless data compression techniques: Shannon-

Fano, Huffman, and the Burrows-Wheeler Transform (BWT). The results of each approach applied to a group

of files are compared and evaluated. The Shannon-Fano approach has varied compression and decompression

timings across files, with compression timings ranging from 30 to 260 milliseconds and decompression

timings ranging from 120 to 2000 milliseconds. The approach achieves varying levels of compression,

resulting in less storage space and computing time among datasets. The Huffman technique, on the other

hand, yields compression ratios that vary between 0.19 to 0.9, with associated saving percentages ranging

from 20.0% to 72.5%. The BWT algorithm showcases compression ratios ranging from 0.2 to 0.7 and saving

percentages from 25.0% to 90.0%. By analyzing the results, the study provides valuable insights into the

performance of these compression techniques and their effectiveness in handling diverse datasets.

Keywords: Compression Techniques, Huffman Coding, Shannon-Fano Algorithm, Burrows-Wheeler

Transform (BWT).

© 2023 The Authors, Published by (TJLMS). This is an Open Access Article under the Creative Common

Attribution Non-Commercial 4.0

INTRODUCTION

The development and generation of digital information have reached unprecedented levels

in today's data-driven society, embracing multiple fields like communications, storage, and

applications for multimedia (Fitzgerald, 2020). With the growing development of data, the

necessity for effective data storage and transfer technologies is becoming increasingly important

(Ahmad et al.,2022). Data compression, an important method in computer science and signal

processing (Russell & Wang, 2022), tackles this difficulty by shrinking data without surrendering

any information, allowing for more efficient and possible resource utilization and improving

overall system’s efficiency (Wright & Ma, 2022). A compressed photo requires fewer bits than its

uncompressed counterpart, so it is transmitted faster, and your hardware can process it more

Traditional Journal of Multidisciplinary Sciences (TJMS)

 July- December 2023, Vol. 01, No. 02, [13 – 28]

Published: 10th August 2023

https://ojs.traditionaljournaloflaw.com/index.php/TJMS

mailto:khaqanarif0@gmail.com
https://ojs.traditionaljournaloflaw.com/index.php/TJMS

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

14

quickly; ultimately, the photo loads faster in your browser (Umbaugh, 2022). An audio and video

file can be compressed by up to 90%, so you can stream it all over the world within seconds

(Seeliger et al., 2022). Compressed images, videos, and audio files on mobile devices are

transferred to cloud servers faster, which saves you time when you back up your devices

(Anaspure, 2022). Lossless data compression algorithms have emerged as a viable solution, with

the ability to properly rebuild the original data without information loss (Nassra & Capella, 2023).

Lossless compression methods, as opposed to their lossy equivalents, are especially important in

situations when data accuracy is critical, including scientific data, healthcare records, monetary

transactions, and preservation purposes (Gudodagi et al.,2023).

Fig 1.1: Data compression

This research article focuses on the implementation and study of lossless compression of

data techniques. As the demand for fast data handling grows, it is critical to investigate and assess

the performance of different compression algorithms in order to determine their usefulness across

diverse types of applications and data. This paper intends to contribute to a better knowledge of

lossless compression of data by shining light on its advantages, limitations, and optimisation

possibilities. The results of this research paper are mainly intended to make a substantial

contribution to the study of lossless compression of data by directing the selection and execution

of appropriate compression techniques for a variety of real-world applications. We hope to enable

technologies and industries that depend on massive amounts of data by improving compression

performance and reducing data redundancy, bringing us closer to a more interconnected and

efficient digital society. In our paper, we study different methods of lossless text data compression

algorithms and calculating the compression size, compression ratio, processing time or speed using

Shannon- Fano, Huffman and Burrows Wheeler Transform Coding.

Finally, the outcomes of this paper will help to provide a complete and specific

comprehension in lossless data compression techniques, their practical practicality, and their

possible uses for optimizing the transmission and storage of data in a variety of real-world

circumstances. The findings of this research will also help data practitioners, programmers, and

academics choose the best compression algorithms based on the type of their data as well as the

performance needs of their systems.

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

15

LITERATURE REVIEW

The following review of the literature provides a review of the major research papers and

advances in the execution and evaluation of lossless compression of data techniques.

Several studies (Biagetti et al.,2021) (Otair et al.,2022) (Hidayat et al.,2020) have been

conducted to compare the performance of various lossless compression techniques. Mohammadi

et al. (2022) compared Huffman coding, LZW, or the BWT algorithms on diverse data formats,

highlighting their advantages and disadvantages. Al-Qurabat and Kadhum (2021) compared

lossless compression algorithms and analysed their usefulness for various application scenarios.

Researchers also investigated the adaptation of lossless compression techniques to various data

formats (Zhang et al.,2023). Long et al. (2021), for example, studied the performance of several

important methods on genomic data, whereas Mallik and Zhao (2020) investigated their usefulness

in compressing images from medical imaging. Arithmetic coding is a statistical encoding

technique proposed in 1987 by researchers Ian H. Witten & Radford M. Neal that specifically

provides fractional bit illustrations for symbols. (Mentzer et al.,2020) It allocates each symbol a

unique interval based on its likelihood of occurrence, leading to concise representation for

commonly seen symbols. Townsend (2021) investigated theoretical elements of arithmetic coding,

whereas later research concentrated on hardware solutions for quicker decoding and encoding

applications. (Ma et al., 2019). The Burrows-Wheeler Transform, invented by Michael Burrows

& David J. Wheeler in 1994, is a data transformation tool (Bello, 2020). When paired with a move-

to-front and run-length encoding, it organizes the input data to produce runs of identical characters,

resulting in greater compression ratios (Kumar et al., 2019). Rahman & Hamada (2020) recently

investigated the application of simultaneous processing and acceleration in hardware to optimise

the BWT compression technique. The LZW algorithm, developed by Abraham Lempel, Jacob Ziv,

and Terry Welch in 1984, is a dictionary-based compression method. It builds a dictionary of

variable-length codes from the input data and effectively represents repetitive patterns with shorter

codes. The LZW algorithm has been extensively studied and widely implemented in various

compression utilities, with research focusing on adaptive variations and dictionary management

techniques (Rahman & Hamada, 2019; Shah & Banday, 2020). David A. Huffman created

Huffman coding in 1952, and it is one of the first and most extensively used lossless compression

algorithms (Karim et al., 2021) (Erdal & Ergüzen,2019). By considering the frequency of the

presence of symbols within the input data, the algorithm generates a variable-length prefix code.

Sarangi (2022), for example, investigated several tweaks and optimizations to increase the

compression effectiveness of Huffman coding. SANDHU (2021) also presented a distributed

implementation of the Huffman method that takes advantage of multi-core CPUs to achieve higher

compression speeds.

RESEARCH METHODOLOGY

Algorithms Applied

Shannon-Fano: Around 1960, Claude E. Shannon from MIT and Robert M. Fano from Bell

Laboratories jointly developed a coding procedure that led to the creation of a binary code tree

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

16

(Williams, 2022). This innovative procedure involved evaluating the probabilities of symbols and

assigning code words based on their respective code lengths. Although the Shannon-Fano coding

technique is very simple and easy to develop in comparison to other ways, but it also lacks practical

significance due to lesser code effectiveness when compared with Huffman coding, as

demonstrated in future demonstrations. (Lawal et al., 2021). The procedure of building a Shannon-

Fano tree adheres to a certain specification to establish a successful code table, and the technique

itself is straightforward. To build the code table, a listing of symbols and their accompanying

percentages or frequency counts are created and implemented, allowing the relative frequency of

occurrence of each symbol to be determined accurately. Despite its historical relevance, the

Shannon-Fano coding methodology has seen limited implementation in practise, with more

effective approaches such as Huffman coding dominating in a variety of data compression

applications. (Oswald & Sivaselvan, 2023; Grewal, 2021).

Shannon-Fano Algorithm:

1. Sort the symbol lists by the level of frequency, with the ones that appear most frequently

appearing symbols on the left side and the least frequently occurring symbols on the right

side.

2. Split the list into two main sections, with the overall frequency numbers for the left part or

side closest to the overall frequency values for the right side as appropriate.

3. The binary digit 0 is then assigned to the left portion of the list, and the binary digit 1 is

assigned to the right part of the list.

4. Apply and repeat steps 3 and 4 recursively to each of the two portions, subdividing groups

and inserting bits to the code until and unless every character has become a code leaf on

the tree.

Step 1

 Inputs are sorted according to their Frequency.

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

17

Step 2: Symbols are divided into two such that sum of the probability on the left side is almost

equal to the probability on the right side (Repeat for all the symbols).

Step 3 (It will repeat for all symbols)

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

18

 Final Step

Huffman Encoding

Huffman coding is an entropy encoding algorithm for lossless statistics compression (Liu

et al.,2022). In this set of rules, many fixed length codes are being replaced with the aid of variable-

length codes. While using variable-length code phrases, it is suited to create an expected prefix

code, avoiding the need for a separator to determine codeword barriers or chellenges. Huffman

Coding mostly uses such a prefix code. A specific probability distribution is used to build a code

tree using Huffman coding. (Nosratian et al.,2021). It varies in three types (Ashila et al., 2019).

1. Static Probability distribution

2. Dynamic Probability distribution

3. Adaptive Probability distribution

Huffman Algorithm: The input is an array of unique characters accompanied by their

frequency of occurrences, and the output is a Huffman Tree based on the given input. (Moffat,

2019) (Kumari & Saini, 2022)

1. Make a (leaf) node for every particular symbol and generate a min-heap by the leaf nodes

2. Find nodes which have the nominal rates from the min heap.

3. Construct a new innermost node with the same number of occurrences as the sum of the

frequencies of the other two nodes. Create the initial extracted node the left node & the

second the right node. Add the following node to the bottom of the heap.

4. Steps 2 and 3 should be repeated until the heap holds only one node. The final node is a

foundation node, and the structure of the tree is complete.

Flow of Huffman Coding:

Fig.2.2 Data compression Flow Graph

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

19

I. Symbols that appear frequently use lower encoding than symbols that appear less

frequently.

II. Both symbols that appear the fewest times will be the same length. The Huffman algorithm

employs the greedy method, in which the collection of rules selects the most pleasurable

choice at each step. A binary structure is built from the ground up. Let us look at an example

of how Huffman Coding works. Expect the following frequencies for each character in a

compressed report:

The method of making this tree is:

1. Create an extensive list of leaf nodes for each image and arrange the nodes according to

the order of descent.

2. Choose the leaf nodes that have the lowest frequency. Construct a parent node containing

both of these nodes and apply the same frequency to the total of the two infant node

frequencies.

Fig.2.3 Lowest Parent Node Creation

3. Now, inside the list, add the determined node and remove the two baby nodes. Repeat

this procedure until you only have one effective node remaining.

Fig.2.4 Huffman Code Tree

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

20

4. Now label every aspect. The left child of every parent is categorized with the digit 0 and

right toddler with 1. The code phrase for each source letter is the order of labels alongside

the direction from root to the leaf node in place of the letter.

Huffman Codes are proven beneath within the table:

Burrows Wheel Transform Coding

In 1994, M. Burrows and D. Wheeler presented a new data compression technique based

on a pre-processing on the input string. Such a Pre-processing, called after them the Burrows

Wheeler Transform (BWT), produces a permutation of the letters in the input string such that

(Giuliani et al.,2021) (Begum et al.,2023)

a. the transformed string is easier to compress than the original one.

b. the original string can be recovered.

It is a lexicographically reversible permutation of a string's characters. It is the first of three steps

to be taken in order when developing the Burrows-Wheeler Data Compressed algorithm, which is

the foundation of the Unix compression programme bzip2.The Burrows-Wheeler Transform offers

two decoding algorithms.

1. The first relies on adding and sorting the output text to make a number matrix M of N x N

dimensions in order to revert the coding process. This approach is simple and straightforward,

but it requires more time for the computer to complete, and the original text S is not recovered

directly.

2. The second approach is more complex than the first depending on the permutations, but it

requires less commuting time as well as storage and will be described. Unlike the first

technique, the result of this method corresponds to the original string S; at the start, we have

the converted string L as well as the index I.

To encode using MTF, a dictionary which is ordered according to the symbols being

entered must be constructed. This is accomplished by shifting the element in the list of symbols

that corresponds to the content of the symbol to the top of the dictionary. Although the preceding

method is used for encoding, it is also used for decoding.

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

21

Burrows Wheeler Transform Algorithm

Fig.2.5 BWT Coding

Data Collection

Text data with the extension txt was utilised as an example in evaluating this compression

strategy. Three text examples files were used in this investigation. Each algorithm has its own:

NO

Compression Technique

.txt

Size in Bytes

1. Shannon-Fano Algorithm 13500

2. Huffman Coding 15600

3. Burrows Wheel Transform

Coding

10600

Table 1 Algorithm’s Data Collection

Analysis Technique

In this comparison, several types of analysis were used: (Sharma & Batra, 2020).

1. The first step is to analyse how it operates in addition to the algorithms.

2. The first step is to do an analysis of how it's done as well as a study of algorithms.

3. Compression time = Starting time - Finishing time

Flow of Data Collection and Analysis

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

22

Fig 2.6 Data Flow

RESULTS AND FINDINGS

Shannon-Fano Algorithm

The results reveal that compression and decompression durations vary between files, from

30 to 260 milliseconds for compression and 120 to 2000 milliseconds for decompression. Overall,

the result shows the Shannon-Fano algorithm's success in achieving various levels of compression,

reducing storage space, and the related choices with computational time required across various

datasets.

S.

No

File Size

(Bytes)

Comp

File

Size

(Bytes)

Compression

Ratio

Compression

Factor

Saving

Percentage

Comp

Time

(mS)

Decomp

Time

(mS)

1 204800 102400 0.5 2.0 50.0% 120 700

2 128000

45056 0.352 2.84 64.8% 90 450

3 65536 40960 0.625 1.6 37.5% 50 280

4 409600 122880 0.3 3.33 70.0% 200 2000

5 256000 51200 0.2 5.0 80.0% 140 900

6 10240 7680 0.75 1.33 25.0% 30 120

7 81920 53248 0.65 1.54 35.0% 180 800

8 86016 33792 0.39 2.96 61.0% 80 400

9 163840 94208 0.575 1.74 42.5% 260 1500

10 28672 15360 0.535 1.87 46.5% 100 550

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

23

A compression ratio of 1.0 indicates that no compression was performed, but lower

numbers suggest more efficient compression (Gui et al.,2019) This information is supplemented

by the "Compression Factor" column, which basically represents the inverse of the compression

ratio. A compression factor of 2.0, means that the compressed file is double as small as the original,

but a value of 1.33 means that the compressed file is about 1.33 times smaller. Overall "Saving

Percentage" column shows the percentage of file size reduction accomplished through

compression, with values ranging from 25.0% to 80.0%. Higher reduction in space and more

efficient compression are indicated by higher saving percentages.

Huffman Algorithm

S.

No

File Size

(Bytes)

Comp

File

Size

(Bytes)

Compression

Ratio

Compression

Factor

Saving

Percentage

Comp

Time

(mS)

Decomp

Time

(mS)

1 204800 102400 0.9 2.3 20.0% 80 300

2 128000

45056 0.215 2.14 54.8% 100 250

3 65536 40960 0.545 1.0 32.5% 210 270

4 409600 122880 0.2 2.33 60.0% 300 1000

5 256000 51200 0.3 6.0 38.0% 150 800

6 10240 7680 0.55 1.23 55.0% 60 110

7 81920 53248 0.76 1.24 35.0% 130 300

8 86016 33792 0.19 1.83 41.0% 70 500

9 163840 94208 0.525 1.72 72.5% 250 1600

10 28672 15360 0.545 1.97 56.5% 110 150

The table shows the results of applying the Shannon-Fano algorithm to a set of files for

lossless data compression. The "Compression Ratio" column displays the original file size to

compressed file size ratio, which ranges from 0.19 to 0.9. Lower compression ratios indicate that

compression is more efficient. The "Compression Factor" column displays the reciprocal of the

compression ratio, with values ranging from 1.0 to 6.0, with larger compression factors indicating

better compression efficiency. The "Saving Percentage" column displays the proportion of file size

reduction accomplished using compression, which ranges from 20.0% to 72.5%. Higher saving

percentages indicate greater space savings.

Burrows Wheel Transform Algorithm

S.

No

File Size

(Bytes)

Comp

File

Size

Compression

Ratio

Compression

Factor

Saving

Percentage

Comp

Time

(mS)

Decomp

Time

(mS)

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

24

(Bytes)

1 204800 102400 0.6 2.0 25.0% 120 400

2 128000

45056 0.3 2.74 50.8% 80 450

3 65536 40960 0.4 2.6 70.5% 50 180

4 409600 122880 0.3 2.33 40.0% 100 3000

5 256000 51200 0.2 4.0 90.0% 140 400

6 10240 7680 0.5 1.53 50.0% 40 110

7 81920 53248 0.6 2.14 35.0% 150 600

8 86016 33792 0.3 2.76 31.0% 40 500

9 163840 94208 0.7 1.25 52.5% 230 1200

10 28672 15360 0.5 1.27 66.5% 300 120

The table clearly shows the results of applying the Shannon-Fano algorithm to a set of files

for lossless data compression. Each row corresponds to a specific file, and the table gives many

critical metrics to evaluate the compression process's effectiveness. The "Compression Ratio"

column displays the original file size to compressed file size ratio, which basically ranges from 0.2

to 0.7. Lower compression ratios indicate that compression is more efficient. The column

"Compression Factor" reflects the reciprocal of the compression ratio, which ranges from 1.25 to

4.0. However, higher compression factors indicate improved compression efficiency. The "Saving

Percentage" column shows the percentage of file size reduction accomplished using compression,

which ranges from 25.0% to 90.0%. Higher saving percentages indicate greater space savings.

During our research on text compression algorithms, we conducted implementations of

various methods and drew important conclusions from our experiments. Specifically, we compared

the performance of the Shannon-Fano algorithm with the Huffman compression technique. Despite

both algorithms employing similar compression processes, we found that the Shannon-Fano

compression exhibited less efficiency when compressing text files compared to Huffman

compression. This was evident from the compressed file size, where Shannon-Fano yielded larger

files than Huffman, consequently resulting in a lower compression ratio for Shannon-Fano.

Moreover, the compression time for Shannon-Fano was significantly higher, taking approximately

67.077 seconds, while Huffman only took 1.313 seconds. Comparatively, the BWT (Burrows-

Wheeler Transform) algorithm proved to be the fastest, completing compression in 0.1522

seconds. These findings highlight the trade-offs between the different compression algorithms,

with Huffman emerging as the more effective and efficient option for text compression in our

experiments. Furthermore, the computational challenge of Huffman coding remained low,

allowing for fast encoding and decoding procedures. This efficiency is especially beneficial in

circumstances requiring real-time or quick data compression and decompression, such as

communication networks or high-throughput data transmission systems. It should be emphasized,

however, that Huffman coding could not always be the best option for all sorts of data. When

working with data that lacks clear patterns or when confronted with datasets that consist of

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

25

uniformly dispersed symbols, like random noise or some types of multimedia files, its performance

may suffer.

CONCLUSION

These findings illustrate the limitations and benefits of the various compression methods,

with Huffman appearing as the more efficient and effective text compression option in our studies.

Huffman coding outperformed previous approaches by obtaining greater compression ratios,

especially for datasets containing largely text-based content. Because of the algorithm's capacity

to apply shorter codes to commonly appearing symbols in the data, file sizes were significantly

reduced, which makes it appropriate for textual material such as texts, documents, and source code.

Finally, the Burrows-Wheeler Transform (BWT) shown distinct advantages in certain cases,

particularly when combined with other compression algorithms. BWT successfully reorganized

the data to allow for higher compression ratios for a variety of data types, including DNA

sequences or textual material with repeating structures. However, its processing overhead and the

need for additional techniques, such as Move-to-Front (MTF) or Run-Length Encoding, can result

in complexity that, in some situations, outweighs its benefits. Moving from one-bit-at-a-time

renormalizations to those which group bits together into bite-sized organisations or larger provides

an important speed boost. To accommodate a larger variety of period durations, byte-based

renormalizations need arithmetic operations with adequate accuracy (e.g., a minimum of 16 or 32

bits). Instead of approximations, such accuracy can be handled efficiently by native CPU

processes. Multiplications have gotten significantly faster, with little influence on coding speed,

even for stationary binary coders. Although binary coders perform coding operations quickly, their

data capacity is usually restricted to one bit per cycle at most. It is best to use algorithms that code

symbols using larger letters to attain the fastest coding speeds, since they can give much higher

throughputs and expected outcomes.

Future Scope

The study areas listed below offer intriguing prospects for additional investigation in the

realm of compression algorithms. In addition to the present Shannon-Fano, Huffman, & Burrows-

Wheeler Transform (BWT) approaches, future research could examine adding new compression

algorithms including Run-Length Encoding (RLE), Move-to-Front (MTF), or LZ77. Furthermore,

examining the execution of a mixture of BWT, Huffman, & Shannon-Fano algorithms on various

file types such as photos, audio, and video can broaden the field of compression techniques beyond

text data. In the years to come, a system based on sensors could be potentially created to

automatically recognize the file type and then select the best possible compression technique for

that specific file. With the growing volume of data that is transmitted and stored on a daily basis,

the necessity for more effective compression methods becomes critical. Efforts can be put towards

improving compression ratios in current systems, especially when source entropy is low (e.g., less

than 3 bits/symbol). Exploring search algorithms that rely exclusively on multiplications and

optimizing the search sequence can result in improved compression efficiency in such

circumstances. Emphasizing these research areas will help to develop compression technologies

and allow for more efficient processing of massive datasets in a variety of application fields.

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

26

REFERENCES

Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic

machine learning in sustainable smart energy/smart energy systems: Key developments,

challenges, and future research opportunities in the context of smart grid

paradigm. Renewable and Sustainable Energy Reviews, 160, 112128.

Al-Qurabat, M., & Kadhum, A. (2021). A lightweight Huffman-based differential encoding

lossless compression technique in IoT for smart agriculture. International Journal of

Computing and Digital System.

Anaspure, M. S. (2022). Automation in cloud environment using cloud services and python

script (Doctoral dissertation, Dublin, National College of Ireland).

Ashila, M. R., Atikah, N., Rachmawanto, E. H., & Sari, C. A. (2019, October). Hybrid AES-

Huffman Coding for Secure Lossless Transmission. In 2019 Fourth International

Conference on Informatics and Computing (ICIC) (pp. 1-5). IEEE.

Begum, M. B., Deepa, N., Uddin, M., Kaluri, R., Abdelhaq, M., & Alsaqour, R. (2023). An

efficient and secure compression technique for data protection using burrows-wheeler

transform algorithm. Heliyon.

Bello, H. B. (2020). Bidirectional Search in a String Using Wavelet Matrix and Burrows Wheeler

Transform (Doctoral dissertation, AUST).

Biagetti, G., Crippa, P., Falaschetti, L., Mansour, A., & Turchetti, C. (2021). Energy and

performance analysis of lossless compression algorithms for wireless emg

sensors. Sensors, 21(15), 5160.

Erdal, E., & Ergüzen, A. (2019). An efficient encoding algorithm using local path on huffman

encoding algorithm for compression. Applied Sciences, 9(4), 782.

Fitzgerald, R. M. (2020). WAKING TO NORMAL: Examining Archival Appraisal in Data-driven

Society.

Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., & Toffanello, A. (2021). Novel

results on the number of runs of the burrows-wheeler-transform. In SOFSEM 2021: Theory

and Practice of Computer Science: 47th International Conference on Current Trends in

Theory and Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, January

25–29, 2021, Proceedings 47 (pp. 249-262). Springer International Publishing.

Grewal, K. S. (2021). Lossless Data Compression by Representing Data as a Solution to the

Diophantine Equations (Doctoral dissertation, Arizona State University).

Gudodagi, R., Akash, K. T., & Ahmed, M. R. (2023, February). Deep Learning Algorithms for

Secure and Efficient Compression of Genomic Sequence Data. In 2023 IEEE 3rd

International Conference on Technology, Engineering, Management for Societal impact

using Marketing, Entrepreneurship and Talent (TEMSMET) (pp. 1-7). IEEE.

Gui, S., Wang, H., Yang, H., Yu, C., Wang, Z., & Liu, J. (2019). Model compression with

adversarial robustness: A unified optimization framework. Advances in Neural Information

Processing Systems, 32.

Hidayat, T., Zakaria, M. H., & Pee, A. N. C. (2020, November). Survey of performance

measurement indicators for lossless compression technique based on the objectives. In 2020

3rd International Conference on Information and Communications Technology

(ICOIACT) (pp. 170-175). IEEE.

Karim, A. Z., Miah, M. S., Al Mahmud, M. A., & Rahman, M. T. (2021, September). Image

Compression using Huffman Coding Scheme with Partial/Piecewise Color Selection.

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

27

In 2021 IEEE 4th International Conference on Computing, Power and Communication

Technologies (GUCON) (pp. 1-6). IEEE.

Kumar, S., Agarwal, S., & Ranvijay. (2019). Fast and memory efficient approach for mapping

NGS reads to a reference genome. Journal of Bioinformatics and Computational

Biology, 17(02), 1950008.

Kumari, P., & Saini, M. (2022). Anomaly Detection in Audio With Concept Drift Using Dynamic

Huffman Coding. IEEE Sensors Journal, 22(17), 17126-17138.

Lawal, T. D., Olatunbosun, L. O., & Gbolagade, K. A. (2021). An Improve Shannon Fano Data

Compression Algorithm using Residue Number System. Commun. Appl. Electron., 7(35),

19-25.

Liu, X., An, P., Chen, Y., & Huang, X. (2022). An improved lossless image compression algorithm

based on Huffman coding. Multimedia Tools and Applications, 81(4), 4781-4795.

Long, F., Wang, L., Cai, W., Lesnik, K., & Liu, H. (2021). Predicting the performance of anaerobic

digestion using machine learning algorithms and genomic data. Water Research, 199,

117182.

Ma, C., Liu, D., Peng, X., Li, L., & Wu, F. (2019). Convolutional neural network-based arithmetic

coding for HEVC intra-predicted residues. IEEE Transactions on Circuits and Systems for

Video Technology, 30(7), 1901-1916.

Mallik, S., & Zhao, Z. (2020). Graph-and rule-based learning algorithms: a comprehensive review

of their applications for cancer type classification and prognosis using genomic

data. Briefings in bioinformatics, 21(2), 368-394.

Mentzer, F., Gool, L. V., & Tschannen, M. (2020). Learning better lossless compression using

lossy compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (pp. 6638-6647).

Moffat, A. (2019). Huffman coding. ACM Computing Surveys (CSUR), 52(4), 1-35.

Mohammadi, H., Ghaderzadeh, A., & Sheikh Ahmadi, A. (2022). A novel hybrid medical data

compression using huffman coding and LZW in IoT. IETE Journal of Research, 1-15.

Nassra, I., & Capella, J. V. (2023). Data Compression Techniques in IoT-enabled Wireless Body

Sensor Networks: A Systematic Literature Review and Research Trends for QoS

Improvement. Internet of Things, 100806.

Nosratian, S., Moradkhani, M., & Tavakoli, M. B. (2021). Hybrid data compression using fuzzy

logic and Huffman coding in secure IOT. Iranian Journal of Fuzzy Systems, 18(1), 101-116.

Oswald, C., & Sivaselvan, B. (2023). Smart Multimedia Compressor—Intelligent Algorithms for

Text and Image Compression. The Computer Journal, 66(2), 463-478.

Otair, M., Abualigah, L., & Qawaqzeh, M. K. (2022). Improved near-lossless technique using the

Huffman coding for enhancing the quality of image compression. Multimedia Tools and

Applications, 81(20), 28509-28529.

Rahman, M. A., & Hamada, M. (2019). Lossless image compression techniques: A state-of-the-

art survey. Symmetry, 11(10), 1274.

Rahman, M. A., & Hamada, M. (2020). Burrows–wheeler transform based lossless text

compression using keys and Huffman coding. Symmetry, 12(10), 1654.

Russell, M., & Wang, P. (2022). Physics-informed deep learning for signal compression and

reconstruction of big data in industrial condition monitoring. Mechanical Systems and Signal

Processing, 168, 108709.

SANDHU, S. (2021). LOSSLESS DATA COMPRESSION: AN OVERVIEW.

Traditional Journal of Multidisciplinary Sciences (TJMS) January-June 2023, Vol. 1, No. 2

28

Sarangi, S. (2022). Hardware Architectures for Lossless Compression. eScholarship, University

of California.

Seeliger, R., Müller, C., & Arbanowski, S. (2022, November). Green streaming through utilization

of AI-based content aware encoding. In 2022 IEEE International Conference on Internet of

Things and Intelligence Systems (IoTaIS) (pp. 43-49). IEEE.

Shah, T. J., & Banday, M. T. (2020). A review of contemporary image compression techniques

and standards. Examining Fractal Image Processing and Analysis, 121-157.

Sharma, N., & Batra, U. (2020). Performance analysis of compression algorithms for information

security: A Review. EAI Endorsed Transactions on Scalable Information Systems, 7(27).

Townsend, J. (2021). Lossless compression with latent variable models. arXiv preprint

arXiv:2104.10544.

Umbaugh, S. E. (2022). Digital Image Processing and Analysis: Digital Image Enhancement,

Restoration and Compression. Crc Press.

Williams, D. M. (2022). Performance Overhead of Lossless Data Compression and

Decompression Algorithms: A Qualitative Fundamental Research Study (Doctoral

dissertation, Northcentral University).

Wright, J., & Ma, Y. (2022). High-dimensional data analysis with low-dimensional models:

Principles, computation, and applications. Cambridge University Press.

Zhang, B., Tian, J., Di, S., Yu, X., Swany, M., Tao, D., & Cappello, F. (2023, June). GPULZ:

Optimizing LZSS Lossless Compression for Multi-byte Data on Modern GPUs.

In Proceedings of the 37th International Conference on Supercomputing (pp. 348-359).

